环保资讯 |
现在世界各国污泥处理涌现了许多新技术,最集中的有以下几个方面:
污泥熔化
为了减少污泥体积和利用其中的重金属黏结作用,日本曾开展污泥熔化技术研究,但还不十分深入。污泥熔化处理也是污泥热化学处理方法的一种。污泥熔化技术是把污泥加热至1300~1500℃,使污泥中有机物燃烧,其残留物质可用来制作玻璃、钢铁、建筑材料等。
两相消化
目前,新型的污水污泥处理工艺如高温酸化-中温甲烷化两相厌氧消化等不断出现,并逐步被应用。边兴玉等采用污水污泥两相厌氧消化工艺,将产酸相和产甲烷相分别置于各自的反应器中,形成各自的相对优势微生物种群,提高了整个消化过程的处理效果和稳定性。VSS(挥发性悬浮颗粒物)去除率比中温传统工艺提高50%以上,比高温传统工艺提高35%左右。高温酸化0.5d后,中温甲烷化8.5d,可达到中温传统法20d的处理效果,节省了时间。另外,灭菌效果优于中温传统法,产甲烷反应器保持较高的缓冲能力,对挥发性酸积累的抵御和耐冲击负荷的能力强。
污泥制油
污泥制油是把含水率为65%的干泥在隔绝空气下,加热升温450℃,在催化剂作用下把污泥中有机物转化为碳氢化合物,最大转化率取决于污泥组成和催化剂的种类,正常每吨干泥转化约为200~300L油的产率,其性质与柴油相似。加拿大正在进行中试试验,澳大利亚Perth也正在建造利用热化学方法将污泥制油的工厂。
污泥湿式氧化(WAO)
湿式氧化法是在高温(125℃~320℃)和高压(0.5~20MPa)条件下,以空气中的氧作为氧化剂,在液相中将有机物分解为二氧化碳、水等无机物或小分子有机物的化学过程。由于剩余污泥在物质结构上与高浓度有机废水十分相似,因此这种方法也可用于处理剩余污泥。剩余污泥的湿式氧化法处理是湿式氧化法最成功的应用领域,目前有50%以上的湿式氧化装置应用于剩余污泥的处理。
臭氧剩余污泥减量化
这一工艺是由日本的H·Yasui等学者提出的。此工艺中,剩余污泥的消化与污水处理在同一个曝气池中同时进行。工艺分成两个过程,一个是臭氧氧化过程,另一个是生物降解过程。
从二沉池中沉下来的污泥,一部分直接回流到曝气池中,另一部分则是先进行臭氧处理然后再回流到曝气池。污泥经过臭氧处理后,能够提高其生物降解性,在曝气池中与污水同时进行生物处理。而且在经臭氧处理后,将有一部分污泥(1/3)被无机化。因此,只要操作适当,可以使污水处理过程中净增污泥量与无机化污泥量相等,从而可以达到无剩余污泥的目的。
超声波处理剩余污泥
在超声波污泥减量技术的应用上,国外尤其是英美德等发达国家已经比较成熟。早在上世纪90年代,德国和英国的很多大型的污水处理厂都已安装并使用该技术。这种应用也为国外开展污泥减量技术的应用研究提供了条件。近年来在欧美国家,大量的研究都是基于污水处理厂的真实条件下的研究。Barber等人以德国的宾得污水厂的超声处理设施为实验环境,探索了在全应用条件下超声处理对污泥的生物化学特性的影响,结果表明:经过超声处理污泥消化的沼气的生成量有了显著的提供,污泥粘度的降低增加了20%~50%,污泥的水解性能提高了3%~7%。这些立足于应用的研究探索了超声污泥减量技术在应用中出现的问题,并能直接用于污水厂对这一技术的改进上。
高速生物反应器
高速生物反应器技术是在利用土壤处理污泥的基础上发展起来的。利用土壤中的微生物处理污泥,由于系统是开放的,因而会受到气温和土壤湿度的影响,使土壤利用的时间和区域受到一定的限制。
美国SWEC公司在上世纪80年代开始研制开发高速生物反应器,该技术将污泥的脱水、消化和干化相结合,将土壤处理的整个过程放置在室内一个封闭的循环系统中进行。Texaco经过近20年的研究开发,使高速生物反应器技术成熟并得以推广。整个操作系统的核心部分是生物反应器,它由二个区域组成:上半部分是污泥与土壤相混合的区域,使污泥负荷达到均一化,污泥的有机部分在这一区域中被生物降解;下半部分是气、液分离区,使液体不滞留于土壤中,以增加氧的传递率。高负荷率的污泥通过该系统的处理,污泥中的有机组分将降解70%~80%,悬浮固体浓度去除率达到45%~60%。从沉淀池排出浓度为5000~30000mg/L的污泥都可以直接进入该系统中,而不需要任何的预处理。相比于其他生物处理技术,该系统所需能量较少,可以连续运行,并能保持最佳温度以利于微生物的降解,特别适合于受自然条件限制或土壤湿度大的污泥处理。